STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains
نویسندگان
چکیده
Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (~10-20 ms) for sufficiently many inputs (~100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks.
منابع مشابه
Relating STDP to BCM
We demonstrate that the BCM learning rule follows directly from STDP when pre- and postsynaptic neurons fire uncorrelated or weakly correlated Poisson spike trains, and only nearest-neighbor spike interactions are taken into account.
متن کاملCompetitive STDP-Based Spike Pattern Learning
Recently it has been shown that a repeating arbitrary spatiotemporal spike pattern hidden in equally dense distracter spike trains can be robustly detected and learned by a single neuron equipped with spike-timing-dependent plasticity (STDP) (Masquelier, Guyonneau, & Thorpe, 2008). To be precise, the neuron becomes selective to successive coincidences of the pattern. Here we extend this scheme ...
متن کاملWhat Can a Neuron Learn with Spike-Timing-Dependent Plasticity?
Spiking neurons are very flexible computational modules, which can implement with different values of their adjustable synaptic parameters an enormous variety of different transformations F from input spike trains to output spike trains. We examine in this letter the question to what extent a spiking neuron with biologically realistic models for dynamic synapses can be taught via spike-timing-d...
متن کاملSpike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains
Experimental studies have observed Long Term synaptic Potentiation (LTP) when a presynaptic neuron fires shortly before a postsynaptic neuron, and Long Term Depression (LTD) when the presynaptic neuron fires shortly after, a phenomenon known as Spike Timing Dependent Plasticity (STDP). When a neuron is presented successively with discrete volleys of input spikes STDP has been shown to learn 'ea...
متن کاملLearning complex temporal patterns with resource-dependent spike timing-dependent plasticity.
Studies of spike timing-dependent plasticity (STDP) have revealed that long-term changes in the strength of a synapse may be modulated substantially by temporal relationships between multiple presynaptic and postsynaptic spikes. Whereas long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength have been modeled as distinct or separate functional mechanisms, here, we propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011